System Architectural Features and Frequency Reuse (Continued)

- Diplexerless duplex and combinerless multichannel will support adaptive and dynamic information transfer rate on demand
- Linear architectures mandate deployment of robust broadband adaptive phase and amplitude channel equalization techniques for single site systems and multi-site quasi and fully synchronous systems for voice, data, and video
- Reuse is a complex technical issue that is IMPLEMENTATION specific
- If reuse is critical, architecture must be optimized for reuse

Spectrum Use Efficiency

- Spectrum efficiency does NOT mandate microcell architectures either in private or public carrier systems
- Balance between infrastructure cost and technology cost is necessary
- Multiple technology solutions are likely
 - Very high power large service radii very narrowband FDMA
 - Microcell CDMA
- Spectrally efficient solutions will be found in a variety of architectures
 - Broadband covert waveform overlay
 - Narrowband FDMA
 - Multi-slot TDMA

Spectrum Use Efficiency (Continued)

- Developments in hybrid linear architectures will facilitate deployment of systems making use of frequency division multiplexing, frequency hopping, time division multiplexing, and CDMA
- 2.5 kHz FDMA channelization at bandwidth efficiencies of 7 b/s/Hz, supporting information transfer rates of up to 17.5 kb/s without guardband
- Linear TDMA providing multi-slot TDMA systems (10 slots in 25 kHz channel) affording bandwidth efficiencies comparable to 2.5 kHz channelized FDMA

Other Advanced Digital Wireless Technology Considerations

System Modeling, Simulation, and Performance Validation

- Enhance TIA TR8 WG8.8 Technology Compatibility Committee Efforts
 Major breakthrough in Modeling, Simulation, and Performance Validation
- Unified standard model for design, spectrum management, and empirical performance verification of any wireless system
- Initially based upon proven empirical propagation model with statistical patches
- Addresses analog and digital system usages
- Addresses 2-D and 3-D propagation modalities
- Ultimately will adopt a universally applicable deterministic 2-D and 3-D model such as the Anderson 2-D and 3-D
- Ultimately will support wideband system attributes
- Increased terrain, land use/land clutter database resolution will improve accuracy

Common Transmission Protocols

• Integrated packetized and switched data and provide hooks into the public switched telephone network in a ubiquitous fashion

Multimode/Multiband Subscriber Equipment

- Linear multimode/multiband architecture
- High power subscriber modes will be applicable in the rural and transitional suburban areas
- Low power broadband systems will likely predominate in urban areas

Covert Communications Support

- Broadband covert waveform techniques such as PN-DSSS, frequency hopping (FH), and hybrids thereof will permit universal overlay of existing and future narrowband and broadband signals for specialized applications
- Dynamically allocated PN-CDMA spread bandwidths ranging from 20-500 MHz
- FHSS systems operating over a 100 MHz bandwidth at hop rates of 100,000 hops/second
- Information transfer rates supported by these covert broadband systems will range from the low 10 kb/s to low 100's kb/s

Public Carrier Conveyances

- Mobile and portable telephone and multimedia service via linear system architectures based upon cellular/microcell and picocell configurations
- Effective cell radii will range from.01 km to 10 km and will be very physical plant investment intensive

Suggested Measure of Spectral Efficiency in Land Mobile Wireless Systems

 Voice channel equivalent Erlangs per MHz bandwidth per square kilometer

or

 \bullet E_{vce}/MHz/Km²

 Similar to that proposed by Hatfield and MacDonald, but normalizes load to a Voice Channel Equivalent Baseline

Advanced Digital Wireless Technology Features and Attributes

- Advanced systems should be evaluated in terms of the following features and attributes
 - Teleservices
 - » Unenciphered and/or enciphered digital speech
 - » Individual call (point-to-point)
 - » Group call (point-to-multipoint)
 - » Broadcast call (point-to-multipoint one way)
 - Video Services
 - » Unenciphered and/or enciphered slow motion video
 - » Unenciphered and/or enciphered full motion video
 - » Individual call (point-to-point)
 - » Group call (point-to-multipoint)
 - » Broadcast call (point-to-multipoint one way)

Advanced Digital Wireless Technology Features and Attributes (Continued)

- Bearer Services
 - » Unenciphered and/or enciphered digital data
 - Circuit Switched Unreliable Data
 - Circuit Switched Reliable Data
 - Packet Switched Unconfirmed Data Delivery
 - Packet Switched Confirmed Data Delivery
 - Circuit Switched Data Network Access
 - Packet Switched Data Network Access
 - Preprogrammed Data Message

Advanced Digital Wireless Technology Features and Attributes (Continued)

- Supplementary Services
 - » Encipherment
 - » Priority Call
 - » Pre-emptive Priority Call
 - » Call Interrupt
 - » Voice Telephone Interconnect
 - » Discrete Listening
 - » Ambiance Listening
 - » Talking Party Identification
 - » Call Alerting